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ABSTRACT 

The Rotating Detonation Engine (RDE) concept represents the next-generation of 

detonation-based engines as it provides higher performance and near constant thrust with 

a simpler overall design. Since RDE systems are in the early stage of development, the 

physics of engine design is yet to be fully understood and developed. A critical concern 

of these systems is the practical isolation of the reactant injection manifold and supply 

system from the combustor pressure oscillations. For this study, the gasdynamic 

conditions that existed at the combustor inlet are investigated and characterized. Using a 

shocktube test case for a Hydrogen-Air mixture, various numerical schemes, number of 

chemical reactions, mesh topology and mesh refinement are first investigated to reliable 

reproduce the Chapman-Jouguet conditions. It was found that explicit 4th Order Runge-

kutta scheme using structured mesh topology, 18 species and 9 reactions with a 

maximum mesh cell size of 0.05 mm was required to reproduce the Chapman-Jouguet 

conditions. Once the suitable parameters were identified, a full 2D RDE simulation was 

carried out to characterize the gasdynamic inlet conditions.  
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I. INTRODUCTION  

A. MOTIVATION 

The Rotating Detonation Engine (RDE) represents the next generation of 

detonation-based engines in the way that it provides the thermodynamic advantages of 

detonation-based combustion with nearly constant thrust and a simpler overall design. 

With the potential to be employed in a wide range of platforms such as missiles, fighter 

aircraft and unmanned aerial vehicles, the RDE relies on a detonation mode of 

combustion similar to what is used on the Pulse Detonation Engine (PDE). RDEs can 

also be used for power generation if implemented in a hybrid engine such as Gas turbine-

RDE where the high-pressure compressor spools, the combustion cans and the high-

pressure turbine spools are replaced by RDE. This would greatly improve efficiency and 

motivate the Navy to implement the usage of hybrid Gas turbine-RDE systems onboard 

ships.  

The RDE operates as a pressure-gain combustor with a higher thermodynamic 

efficiency with a constant energy conversion process to provide high power-to-weight 

ratio with fewer moving parts [1]. In addition, RDEs can be filled with reactants moving 

at low subsonic velocities in the axial direction thus drastically lowering the pressure 

losses encounter in PDE systems. The RDE is also able to internally sustain the 

detonation once ignited to generate continuous thrust as the combustion wave propagates 

at its supersonic Chapman Jouguet (CJ) speeds in the azimuthal direction. The 

fundamentals of RDE design allow the reactants in the detonation chamber flow 

continuously, reducing the requirement for valves. These advantages give the RDE the 

potential to surpass the performance of the majority of propulsion systems being fielded 

today. 

With RDEs still in the early stages of development, the physics of the engine 

design has yet to be fully understood and developed. Presently, no operational RDE has 

been fielded and theoretical studies on the engine are also limited.  
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B. BACKGROUND 

The basic idea behind the RDE is the generation of a detonation wave that rotates 

around an annular combustion chamber formed by two concentric cylinders, producing 

thrust that is nearly continuous as combustion products are expelled out of the RDE. 

Injecting fuel-oxidizer mixtures axially in the chamber (see Figure 1), produces 

conditions that allow a detonation wave that propagates in the azimuth direction. A 

detonation wave initiator which sends a detonation wave into the mixture and the 

detonation wave will rotate around the combustion chamber. Finally, combustion 

products expand behind the detonation wave creating weak shockwaves, which flows out 

along the axial direction.  

 

 

Figure 1.   Schematic of a Rotating Detonation Engine 

The height and stability of the detonation wave is determined by the inlet 

conditions and geometry of the RDE. These inlet conditions are in turn affected by inlet 
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design factors such as the reservoir pressure, dimension of the inlet nozzles and injection 

velocity. Therefore, careful design of the RDE inlet is required to properly isolate the 

annular combustion chamber, and this can be achieved only after the gasdynamic effects 

at the inlet region have been understood. 

C.  GOALS AND OBJECTIVES 

As described in the preceding sections, the design of the engine inlet is crucial to 

the overall development of the RDE. The goal of this thesis is, therefore, to help engine 

designers to properly design an RDE inlet that takes the advantage of the existing 

gasdynamics to help isolate the inlet from the rotating detonation inside the annular 

combustor.  

The objective of this thesis is to understand the gasdynamic conditions namely 

pressure, temperature, mass flow rate, velocity and density that exist at the combustor 

inlet. This study conducts numerical computational simulations using the commercial 

software CFD++ computational platform, which helps us to gain insight into the physical 

aspects unique to rotating detonations.  

Since the focus of this thesis is inlet design, the outlet geometry of the RDE will 

be simplified. Furthermore, due to complexities that arise from the use of complex 

hydrocarbon fuels, we restrict our research to the use of a Hydrogen-Air mixture as the 

RDE fuel.  

D. TECHNICAL APPROACH 

Numerical computational simulations will be conducted using CFD++ 

computational software developed by MetaComp Technologies with the methodology as 

follows:  

 The review of detonation theory from previous numerical and experiment 
studies that have been done on RDE to gain insights into the simulation 
step up. 

 Decomposition of the 3D computational domain into a 2D domain to 
simplify the computational requirements. 
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 Use of a shocktube (a subset of the 2D domain), to further reduce the 
computational requirements to make reliable reproduction of the CJ 
conditions for rotating detonation. 

 Run full 2D cyclic domain simulations with the appropriate initial and 
boundary conditions. 

 Analysis of results. 
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II. THEORY 

A. ROTATING DETONATION ENGINE COMBUSTOR 

The RDE represents a propulsion system where thrust is provided by combustion 

products from a detonation wave rotating azimuthally inside an annular combustion 

which are accelerated through a nozzle. The process is initiated by injecting a fuel-

oxidizer mixture such as Hydrogen-Air mixture via the inlets into the chamber. Once the 

chamber is sufficiently filled, a detonation wave initiator will send a detonation wave 

tangentially into the mixture. A high-pressure deflagration wave then propagates for a 

short distance and forms a rotating detonation wave. The rotating detonation wave will 

continuously propagate at the CJ velocity. The detonation wave will be continually 

supplied with freshly injected fuel-oxidizer mixture. The products and oblique 

shockwaves will exit from the outlet. Thrust is generated by the acceleration of the 

combustion products. Figures 2 to 4 illustrate the operating mechanism of the RDE. 

radial

axial

azimuthal

Fuel‐oxidizer 
mixture

A

A'

Inlet

Outlet

 

Figure 2.   RDE operation mechanism- Fill phase 
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Figure 3.   RDE operation mechanism- Ignite phase 
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Figure 4.   RDE operation mechanism- Continuous operation 
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B. DETONATION THEORY  

There is a need to first understand the basics of detonation physics. A combustion 

wave which travels at supersonic speed is known as a detonation wave, while a 

deflagration wave travels at subsonic speeds. A detonation wave shares many features of 

a shock wave but has the added complexity of chemical reactions occurring.  

Figure 5 further illustrates the detonation wave using a simplified 1D wave 

profile. When the detonation wave moves through the reactant, chemical reactions occur. 

The “von Neumann” spike is controlled by the timescale of the chemical reactions, with 

the rate of chemical reaction determined by the width of the reaction zone. At the end of 

the reactions, the products reach a sonic condition known as the Chapman-Jouguet point, 

after which the products are released as an expansion wave.  

Detonation wave 
direction

Von Neumann Spike

C‐J Point

Taylor Wave

Reaction 
Zone

x

P, ρ

 

Figure 5.   1D detonation wave profile 

To understand the relationship of the upstream and downstream gasdynamic 

properties, we apply the equation for the mass conservation, momentum, energy and 

equation as shown below. Figure 6 illustrates a 1D planar combustion wave in a long 

channel with a constant area, with the reference frame being the combustion wave itself. 

The combustion wave is assumed to have reached a steady state: - it is adiabatic and 
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remains in chemical and thermodynamic equilibrium [2]. The ideal gas law is an 

acceptable approximation for equation of state for gases during combustion. 

 

Figure 6.   Schematic diagram of 1D combustion wave [From 2] 

Conservation of Mass: 

1 1 2 2u u           (1) 

Conservation of Momentum:  

2 2
1 1 1 2 2 2P u P u            (2) 

Conservation of Energy: 

2 2
1 2

1 22 2p p

u u
C T q C T           (3) 

Equation of State (Ideal Gas Law): 

P RT          (4) 

Specific Heat Relation: 

1pC R






         (5) 
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where: 

 R Specific Gas Constant = Universal Gas Constant / Molecular Weight 

 q = Specific heat energy added to the system via combustion process 

 pC = Specific heat at constant pressure 

  = Ratio of specific heat 

A relationship describing the solution for a steady state 1D combustion wave is 

derived by combining Equations (2) to (4). This relationship is known as Hugoniot 

relation as described by Equation (6).   

Hugoniot relation 

 2 1
2 1

2 1 1 2

1 1 1

1 2

P P
P P q


    

   
           

     (6) 

By plotting of pressure ( 2P ) versus specific volume (
2

1


), then we can obtain the 

Hugoniot curve. The Hugoniot curve represents the potential locus of end states behind 

the detonation wave. At each end state, the slope of the Hugoniot curve relates the 

velocity of the combustion wave. 

 

Figure 7.   Hugoniot curve profile [From 2] 
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By combining Equations (1) and (2), the Rayleigh line relation shown in Equation 

(7) is formed. A Rayleigh line represents the path where the reactants at an initial state 

transiting into products in a final state and is represented by the dashed line from Origin 

A to the Upper CJ Point in Figure 7. 

Rayleigh line Relation: 

2 2 2 1
1 1

1 2

1 1
P P

u

 





        (7) 

There are two possible final states that can occur using the Rayleigh line relation. 

Referring again to Figure 7, we see the product of initial pressure ( 1P ) and specific 

volume (
1

1


) represented by origin A. From the origin, two points the Rayleigh line is 

tangent to the Hugoniot curve at two points known as upper and lower CJ points. The 

upper CJ point represents the steady detonation velocity solution, while the lower CJ 

point represents a maximum deflagration point [3]. With this, the CJ points are obtained 

as follows: 

By differentiating the Hugoniot relation, Equation (6), with respect to (
2

1


): 

2 1 2
2

2 2 2 1

2
( )

1

1 2 1 1 1
1

P P P
dP

d





    

 
    

    
         

      (8) 

Also, using the slope at the tangent of upper and lower CJ points: 

2 2 1

2 2 1

( )

1 1 1

dP P P

d
  




   
   

   

        (9) 

Using the speed of sound, 2c , for the products: 
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2c RT          (10) 

Equating Equations (8) and (9) and substitute Equations (7) and (10): 

2 22
2 2

2

P
u c




           (11) 

2 2u c           (12) 

From Equation (12), it can be concluded that the by-products leave the 

combustion wave is at sonic condition with respect to the combustion frame.  

In addition, the solution on the Hugoniot curve can be divided into five regions. 

Region I is defined as the strong detonation region where strong overdriven detonations 

propagates above upper CJ point. The lead combustion wave front travels much faster 

than the products resulting in a larger induction zone. This induction zone increases till 

the reactants are unable to have any further effect on the wave front thus slowing it down. 

An overdriven detonation wave will always decay back to the CJ point.  

Region II is defined as the weak detonation region where the velocity of the 

products travels faster than the lead combustion wave. This results in a reduction in the 

induction zone, where additional heat has to be supplied to increase the combustion wave 

speed back to the upper CJ point.  

Region III is defined as the weak deflagration region. The combustion waves exist 

as expansion or rarefaction waves, which have lower product density than reactants. 

These waves are often observed experimentally in the deflagration to detonation phase.  

Region IV is defined as the strong deflagration region. This is a physically 

impossible state as the combustion wave cannot accelerate from subsonic to supersonic 

speeds in a constant area duct.  

Region V is mathematically impossible as the solution is imaginary number from 

the Rayleigh-line equation.  
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C. DETONATION WAVE STRUCTURE (ZND) 

An extension of Chapman-Jouget’s theory is a wave structure model known as 

ZND model developed by Zeldovich, von Neumann and Doring. As shown in Figure 8, 

the ZND model consists of gasdynamic properties across a detonation wave followed by 

a rarefaction region. In the shockwave, there is a sharp increase in pressure, temperature 

and density. The thickness of the shockwave region is very small, usually in the order of 

a few mean paths of gas molecules where reaction is limited. The rarefaction region 

consists of an induction zone and reaction zone.  The properties in the induction zone 

remains constant except of the temperature profile which increases slowly. In the reaction 

zone, the high energy released from the reactions of the fuel-oxidizer mixtures causes the 

temperature profile to increase sharply whereas the pressure and density continues to 

decrease.  

P

T

Induction Zone

Pressure, 
temperature, 
density

distance

Reaction Zone



Shock wave Rarefaction region

 

Figure 8.   ZND model [From 2] 

D. DETONATION INITIATION 

There are two main processes to obtain a detonation wave, namely deflagration-

to-detonation transition (DDT) and direct initiation. Under the appropriate boundary 
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conditions, a deflagration wave will accelerate to a high supersonic velocity and transit 

into a detonation wave. Figure 9 shows a fuel-oxidizer mixture filled tube undergoing the 

DDT process. 

Shock front

Compression WavesTransverse Waves

Retonation

Flame Brush

Products Reactants

 

Figure 9.   Schematic diagram of DDT process [From 2] 

Upon ignition of the fuel-oxidizer mixture, a deflagration shock wave propagates 

into the reactants followed by a series of compression waves. These compression waves 

heat up the region behind the leading shock to create a localized high temperature region, 

which causes the velocity of the compression waves to increase further. The compression 

wave eventually catches up with the leading shock wave and coalesces into a sufficiently 

strong shock wave which can support a detonation wave [2]. The detonation wave in a 

confined tube causes the gas particles to move and create turbulence, which results in the 

onset of “an explosion in an explosion”. Two strong shock waves are created in the 

opposite direction: with the forward shock waves known as super detonation, and the 

shock waves that travel back towards the products known as retonation. When this 

process reaches a steady state, a self-propagating CJ detonation wave is formed.  

It is also possible to initiate a detonation without going through the DDT process. 

Direct detonation refers to the spontaneous formation of a detonation wave without a 

predetonation deflagration regime. Here, the ignition source is responsible for the 

generation of the flow field and the formation of detonation wave [3]. There are several 

methods of direct detonation such as the use of powerful explosives; or photolysis and 
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turbulent mixing.  In both processes, the important criterion towards achieving a self-

sustaining detonation is the critical tube diameter (dc) which is thirteen times the 

detonation cell width for a circular tube, and ten times the detonation cell width for a 

planar channel [2]. 

E. DETONATION CELL WIDTH 

Detonation cells are formed through the interaction of the transverse and 

longitudinal compression waves. Detonation cell width is measured experimentally using 

a soot foil imprint technique where a detonation wave leaves a fish scale pattern on the 

soot coated aluminum sheeted lining the surface of a tube. Different concentration of 

fuel-oxidizer mixtures will have different cell sizes. Figure 10 shows the typical soot foil 

imprint from a Hydrogen-Oxygen mixture [4].  

 

Figure 10.   Soot foil imprint of Hydrogen-Oxygen mixture [From 4] 

The detonation cell width is the transverse distance between each fish scale. 

Figure 11 shows the schematic of a detonation front cell structure. The non-planar shock 

front is induced by the energy release during the reactions within the fuel-oxidizer 

mixture. The Mach stem, incident shock, and reflected shock interact to produce a shear 

discontinuity known as the triple point.  
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Figure 11.   Schematic of detonation front structure [From 4] 

The cell width is also an effective parameter used to characterize the detonability 

of fuel-oxidizer mixture. A more reactive fuel-oxidizer mixture such as Hydrogen-

Oxygen will have smaller cell size than a typical hydrocarbon fuel such as Ethane (C2H6). 

Diluting the Hydrogen-Oxygen mixture with air however, reduces the reactivity hence 

increasing the cell size. To give us a sense of the scale, Kaneshige [5] reports that with an 

initial pressure of 101.5 atm and initial temperature of 293 K, a stoichiometric Hydrogen-

Oxygen mixture diluted with N2 has a cell size of 4.3 mm.  

F. EQUIVALENCE RATIO OF FUEL-OXIDIZER MIXTURE  

The equivalence ratio   is defined as the actual fuel-oxidizer ratio to the 

stoichiometric fuel-oxidizer ratio. The stoichiometric reaction here means that the 

oxidizer has been completely used up when reacting with the fuel. It is a unique reaction 

for every different mixture. The equivalence ratio can be computed using either the mass 

fraction or mole fraction as shown in equation below. 

h om h om

/ /

( / ) ( / )
fuel oxidizer fuel oxidizer

fuel oxidizer fuel oxidizerstoic i etric stoic i etric

m m n n

m m n n
      (13) 
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where: 

m = mass of molecules 

n = number of moles 

An equivalence ratio of more than one would imply that there is excess fuel, or 

that the mixture is fuel rich. Conversely, a ratio of less than one would imply excess 

oxidizer or a mixture that is fuel lean. The equivalence ratio will influence the 

thermodynamic property and composition of the fuel-oxidizer during detonation. 

G. CHEMICAL KINETIC REACTION MODEL 

During combustion or detonation, the chemical reactions take place at a finite 

rate. This rate is governed by chemical kinetics and depends on the concentration of the 

chemical compound, the prevailing temperature and pressure conditions; as well as the 

presence of a catalyst and radiative effects. The dependence of the reaction rate, k, is 

given by the Arrhenius Equation: 

expn aE
k AT

RT
   
 

        (14) 

where: 

A= collision frequency for the species  

n= represents the temperature dependency of the reaction. 

Ea = amount of activation energy required for the reaction to occur  

R = universal gas constant 

A detail chemical reaction model of a fuel-oxidizer mixture will have hundreds of 

reaction and species under all operating conditions. Therefore, it is computationally 

demanding especially for complex detonation like RDE. Hence, it is important to use a 

reduced chemical model, which allows us to capture the detonation process and provide 

the accurate gasdynamic properties at the same time. 
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H. INVISCID NAVIER-STOKES OR THE EULER EQUATION 

For the purpose of this thesis, the fuel-oxidizer mixture used is Hydrogen-Air 

mixture, and is assumed to be ideal gas and inviscid. During detonation, the interaction 

between the shock and combustion wave dominates over the effects of transport 

properties such as viscosity, thermal conduction and mass diffusion. Therefore, the 

governing equation used for this study is the 2D inviscid Navier-Stokes, which simply 

reduces to the well known Euler equations below.  

1 2( ) ( )Q F F
S

t x y

  
  

  

  


       (15) 
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   (16) 

where: 

Q = the dependent variable vector 

iF


 = the inviscid flux vectors 

S


= the source term vector 

e = total energy 

 = density 

 p = pressure 

k = the species mass fraction from species 1 to k 

 k = the rate of mass production for each species 
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I. COMPUTATIONAL NUMERICAL SCHEMES  

There are two main categories of time integration scheme in computational 

numerical schemes, namely the implicit and explicit schemes. It is important to 

understand the differences between the two schemes to properly set up the simulation. 

Equation (17) shows a simple scalar equation which has to be discretized using the data 

from some time level, where the terms on the right hand side of the equation are the 

source term solutions required at each time step. An explicit integration will use the 

known data Un and results in Equation (18). For an implicit integration, the right hand 

side term is discretized using time advanced term Un+1 shown in Equation (19). 

nU
RHS

t





         (17) 

1n n
nU U

RHS
t

 



        (18) 

1
1

n n
nU U

RHS
t







        (19) 

To solve for Equation (19), there will be a linear system of equations relating the 

current time level to the time advanced level. 

 
1

1( )
nn n

n n nU U RHS
RHS U U

t U


       

     (20) 

The implicit scheme is generally known to be more stable as the forward solution 

is coupled together with the previous solution as shown by Equation (20), and will not 

generate an overly large value. There is also no restriction on the time step size but will 

require additional computation on the linear systems of equations.  

The explicit scheme generally requires small time steps for stability and accuracy. 

This can impose restrictions on chemistry terms. The time step is being prescribed by the 

Courant-Friedrichs-Lewy (CFL) number, which relates the time domain to the spatial 

domain and is shown in Equation (21). CFL can be defined using the computational mesh 
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size or a fixed time step, and small CFL number implies a finer resolution in the 

computation and will generally require more computational resources. It is therefore 

important to optimize the simulation by selecting the suitable CFL number. Ho et al. [4] 

investigated the cell size suitable for hydrogen-air mixtures for computation simulation 

and found that a cell size of 0.0625 mm is sufficient. 

t
CFL a

x





        (21) 

where:  

a = maximum signal speed. 

Beside the main integration schemes, there are two methods that are generally 

employed to improve the convergence and accuracy of the solution by making the system 

less stiff and allow dissipation. The first method is to use a spatially varying local CFL 

numbers, which varies the CFL number at each cell or time step. The second method is 

dual time stepping which appends a pseudo time derivative term by having a pseudo time 

step as shown in Equation (22).  

1 1
1( )

nn n n n
n n nU U U U RHS

RHS U U
t U

 
          

   (22) 

Dual time stepping allows inner iterations to use the pseudo time step  and at 

convergence, disappears with the solution advancing by an actual physical time step 

of t . 

Currently, there is no standard scheme to adopt for RDE simulation. A simpler 

method will be to use implicit scheme since it is more efficient. However, this is not 

always the case for reactive flow simulation involving a large number of species 

conservation Equations [6]. One example is using 4th-order Runge-Kutta explicit method, 

which requires less time than an implicit method since matrix inversion for the linear 

system of equations is not necessary.  
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III.  LITERATURE REVIEW 

A. NUMERICAL SIMULATION 

In 1959, Voitsekhovskii [7] was the first researcher to pioneer the use of one or 

more detonation waves spinning in an annular tube which was constantly filled by a 

combustible mixture from one end. As RDE began to receive more attention as an 

alternative propulsion concept, more numerical simulations were conducted. Zhdan et al. 

[8] used a 2D unsteady mathematical model with a Hydrogen-Oxygen mixture and found 

that a rotating detonation wave formed when the combustor length was 1.5 times or more 

than the rotating detonation wave.  

Davidenko et al. [9] used a 6 species, 7 reactions chemical kinetic model for 

stoichiometric Hydrogen-Oxygen mixture to investigate the effects of the injector relative 

area and injection pressure. The numerical simulation used an Euler code based on a 

shock capturing, weighted essentially non-oscillatory (WENO) scheme with semi-

implicit additive Runge-Kutta scheme. The CFL number used was 0.5 to 0.7, with the 

conclusion that the injection pressure acted as a scaling factor for the injection mass flux 

and wall pressure. The propagation velocity of the detonation wave matched the ideal CJ 

velocity and was found to be insensitive to the changes in the chamber height. The 

frequency between the detonation wave and fuel-air mixture height were inversely 

proportional to the azimuthal distance. 

Yi et al. [10] conducted both 2D and 3D simulations using adaptive mesh 

refinement to achieve numerical efficiency and accuracy.  The simulations employed 

second-order, three-step Runge-Kutta method for the temporal terms.  A one-step 

chemical reaction model for Hydrogen-Air mixture was adopted. The numerical model of 

the annular chamber with length 0.177 m, outer diameter of 0.15 m and inner diameter 

0.13 m was used for the simulation.  For both cases, the denotation wave velocity 

propagated close to the CJ velocity. Yi et al. [11] further investigated the effects of 

nozzle shapes on the performance of RDE using 3D simulation. It was concluded that 
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since the flow at the chamber exit had already reached supersonic speeds, there was no 

further requirement to attach a convergent-divergent nozzle. 

Hishida et al. [12] recommended using a fourth ordered Runge-Kutta time 

integration to resolve unsteady RDE problems and presented the fundamental flow field 

of rotating detonation. Yamada et al. [13] investigated the effects of doubling the 

computation area and increase in ignition energy on two different reservoir pressures at 

2.7 MPa and 7.0 MPa. It was found that the upper detonation limit does not have any size 

effects unlike the lower limit. Sun et al. [14] used a simplified implicit method to deal 

with the stiffness generated by the chemical reacting source term in the species equation. 

A 9 species 19 reactions chemical mechanism was used, and a rotating detonation wave 

was achieved successfully. Schwer et al. [15] further developed a numerical procedure 

for investigating the flow field using algorithms used for PDEs. This pressure study was 

conducted by varying the inlet stagnation pressure and back pressure, and it was found 

that the height of the detonation wave generally decreases with decreasing pressure ratio, 

whereas mass flow depends mostly on the inlet stagnation properties. 

B. RDE DEMONSTRATORS 

In order to better design a computational setup for RDE, numerous practical 

experiments and RDE demonstrators were being reviewed. Nicholls et al. [16] performed 

experiments to determine the feasibility of RDE. Zhdan et al. [17] performed experiments 

on a simple annular chamber and they recorded transverse detonation waves. The 

parameters used are detonation velocities of 1,100 to 1,430 m/s with an equivalence ratio 

of 0.8 to 1.94. Bykovskii et al. [18] investigated the rotating detonation in various 

combustion chambers with hydrogen-air mixtures, and measured wave speeds of 

1880m/s and observed 1 to 2 oblique shockwaves between the incident and reflected 

waves.  

In recent years, France, Russia and Japan had successfully built RDE 

demonstrators to verify the propulsion performance, mechanical vibrations and thermal 

aspects of the ignition system and fuel injection system. Laboratory of Combustion and 
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Detonation in Poitiers, France [19] used an annular chamber of 100 mm diameter, 2.5 

mm height and 40 mm length with no nozzle connected as their demonstrator as shown in 

Figure 12 to 13. 

 

Figure 12.   RDE demonstrator [From 19] 

 
 

Figure 13.   Ignition System [From 19] 

Hayashi et al. [20] had also developed a RDE system to compare experimental 

and numerical solutions. The RDE system is shown in Figure 14.  
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Figure 14.   RDE System [From 20] 

In 2009, Lavrentyev Institute of Hydrodynamics and MBDA-France [21] had 

designed a full scale demonstration engine of 350 mm external diameter and 280 mm 

internal diameter as shown in Figure 16.  

 

 

Figure 15.   RDE Demonstrator Engine [From 21] 
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The review of various RDE demonstrators provided a better understanding on the 

practicality of RDE thus allowing a more robust computational domain to be formulated. 
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IV. COMPUTATIONAL SETUP 

A. 2D COMPUTATIONAL DOMAIN 

A complete 3D numerical simulation of an RDE as a first approach was deemed 

to be too computationally intensive and expensive. Therefore, the 3D RDE was 

simplified into a 2D domain as shown in Figure 16. The 3D annular combustion chamber 

had been projected as a 2D rectangular chamber. The height of the annular chamber in 

the radial direction was assumed to be relatively small compared to the arc length in the 

azimuthal direction. Therefore, the effect of the height was neglected and the domain 

could be represented by a 2D planar chamber.  

 

radial

axial

azimuthal
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Inlet

Fuel‐oxidizer 
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Products
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A

A'
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Left

0.44m

0.162m

radial

axial

azimuthal

Right

 

Figure 16.   Schematic of the 2D computational domain  

An incremental approach was taken for the simulation of RDE. The first step was 

to use a smaller domain to create a shock wave. Once a shockwave was achieved, the 

next step was to reliably reproduce the CJ conditions. Chemical reactions were first 

added to produce a detonation wave. Various simulation parameters were explored such 

as time integration scheme, CFL number, mesh cell size, unstructured and structured 

mesh topology. Once the CJ conditions were reproduced, different fuel-oxidizer ratios 
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were then compared to the CJ conditions to select the final simulation parameters.  The 

suitable boundary conditions for the RDE simulation were finally selected by looking at 

the overall flow field of the detonation wave. A full RDE simulation was thus carried out 

to characterize the inlet. Finally, a novel simulation set-up was conducted to better depict 

the actual RDE operation. 

B. BASIC SHOCKTUBE SIMULATION 

It was first necessary to understand the basics of shock physics and the methods to 

setup a CFD simulation. A shocktube of length 0.1 m and height 0.02 m was used to 

represent a subset of the 2D computational domain as shown in Figure 17. The initial and 

boundary conditions were shown in Table 1. The 2D computational domain was created 

using Solidworks CAD software. The domain was exported to Multipurpose Intelligent 

Meshing Environment (MIME) software to create triangular unstructured meshes. A 

coarse mesh size of 0.1 mm was used for this simulation as shown in Figure 18. The 

commercial computational software, CFD++, was used to simulate the gasdynamics and 

flow field of a RDE.  

0.02m 0.08m

0.02m

Reactants
P1=101 kPa
T2= 300 K
Mass Fraction (H2)= 0.11
Mass Fraction (O2)= 0.89

Products
P2= 200 kPa
T1= 300 K
Mass Fraction 
H2= 1
O2 = 0

Right

Inlet

Left

Outlet

 

Figure 17.   Schematic of basic shocktube simulation  
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Table 1.   Simulation parameters for basic shocktube simulation 

Basic Shocktube Simulation 
Parameters Settings 
Dimensions 0.1 x 0.02 m 
Initial Conditions Products: 200 kPa, 300 K 

Reactant: 101 kPa, 300 K 
Boundary Conditions Inlet: Multi-species inviscid surface tangency (Wall) 

Outlet: Multi-species inviscid surface tangency (Wall) 
Left: Multi-species inviscid surface tangency (Wall) 
Right: Multi-species inviscid surface tangency (Wall) 

Equation Set Compressible Euler Equation 
Equation of State: Ideal Gas  

Spatial Discretization 2nd order accuracy in space 
2D 
Total Variation Diminishing (TVD): Continuous 

Riemann Solver Minimum Dissipation: LHS & RHS 
Activate pressure switch: Supersonic 
Activate pressure gradient switch: Normal 

Time Integration Point implicit 
Dual time stepping 
Global CFL: 1e15 
Local CFL: 0.95 

Mesh Size 0.1mm  
532766 triangles 
Topology: Unstructured 

Reaction None 
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Figure 18.   Unstructured mesh topology 

C. RELIABLE REPRODUCTION OF CJ CONDITIONS 

It was important to make reliable reproductions of detonation waves with CJ 

conditions since this research uses a commercial CFD code.  The next step was to include 

chemical reactions in the shocktube to produce a detonation wave. Here, a one step 

reaction as shown by Equation (23) for a stoichiometric H2-Air mixture was used 

conjunction with a Hydrogen-Air mixture ( 1.0  ). 

2 2 2 2 20.5( 3.76 ) 0.5(3.76)H O N H O N        (23) 

where the respective mass fractions Xi for reactants and Yi for products were: 
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2

2

2 2
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0.5(3.76 ) 18 0.5*3.76(28)H O

H O
Y

H O N
  

 
 

2

2

2 2

0.5(3.76 ) 0.5*3.76(28)
0.74519

0.5(3.76 ) 18 0.5*3.76(28)N

N
Y

H O N
  

 
 

Subsequently, a 2 step chemical reaction [22] was used. The reactions were as 

follows: 

2 2 2H O OH          (24) 

2 22 2OH H H O          (25) 

Finally, a reduced chemical mechanism of 18 reactions and 9 species [23] was 

used to achieve high fidelity in the solution shown in Table 2. Both implicit and explicit 

time integration with various CFL numbers were investigated to determine the detonation 

flow field. In addition, the mesh size had been reduced to 0.05 mm and there were a total 

2,113,220 triangles as shown in Figure 19. A summary of various setting of the 

computational set-up was shown in Appendix A. 
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Figure 19.   Reduced mesh size topology 
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Table 2.   Reduced chemical mechanism for Hydrogen-Air mixture 

 

 

Once the detonation wave was established, the mesh topology was changed to 

structured meshes to allow for more efficiency computation. Using the commercial 

meshing software, Pointwise, structured rectangular meshes were generated for the 

computational domain. The mesh size was 0.05 mm and the total number of meshes 

increased to 409,200 rectangles, with the structure mesh topology is shown in Figure 20. 
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Figure 20.   Structured mesh topology  

D. CJ CONDITIONS WITH DIFFERENT FUEL-AIR RATIOS 

The next step was to determine the CJ conditions such as temperature and 

velocity for fuel lean, stoichiometric and fuel rich conditions. The ratios selected were 0.7 

and 2.2. The mass fractions of each species were calculated as follows: 

For a Fuel Lean mixture ( 0.7  ), 

2 2 2 2 2 20.7 0.5( 3.76 ) 0.7 0.15 0.5(3.76)H O N H O O N       (23) 

where the respective mass fractions Xi for reactants and Yi for products were: 
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For a Fuel Rich mixture ( 0.7  ), 

2 2 2 2 2 22.2 0.5( 3.76 ) 1.2 0.5(3.76)H O N H O H N       (25) 

where the respective mass fractions Xi for reactants and Yi for products were: 
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Both the implicit and explicit time integration schemes were used to determine the 

CJ conditions. 
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E. CONFIRMATION OF PERIODIC BOUNDARY CONDITION 

For this study, it was important to create periodic boundary conditions to allow 

the left and right boundary to be connected during the simulation (Figure 21). Hence, 

several iterations were done to ensure that the detonation wave was able to flow through 

the connecting boundary. The high-pressure region was being offset from the centre of 

the shocktube so that the detonation waves could be differentiate when it propagate 

through the boundaries. The simulation set up was shown in Table 3. 

Table 3.   Simulation parameters for periodic boundary simulation 

Periodic simulation  
Dimensions 0.1 x 0.02 m 
Initial Conditions Products: 200 kPa, 3,000 K 

Reactant: 101 kPa, 300 K 
Boundary Conditions Inlet: Multi-species inviscid surface tangency (Wall) 

Outlet: Multi-species inviscid surface tangency (Wall) 
Left: Periodic Zonal  
Right: Periodic Zonal 

Equation Set Compressible Euler Equation 
Equation of State: Ideal Gas  

Spatial Discretization 2nd order accuracy in space 
2D 
Total Variation Diminishing (TVD) limiter: Minmod 

Riemann Solver Minimum Dissipation: LHS only 
Time Integration 4th order explicit Runge-kutta 

CFL: 1 
Mesh Size 0.05 mm  

797,601quadilateral 
Topology: Structured 

Reaction 9 species 18 reactions 
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Figure 21.   Schematic of periodic boundary simulation 

F. FULL RDE SIMULATIONS 

Using a RDE with diameter of 0.14 m and length of 0.162 m, the computational 

domain dimensions were of the width 0.44 m and length 0.162 m (Figure 22).  This 

dimension was chosen so that the computational domain was comparable to the physical 

RDE demonstrators. 

Outlet (Mach Number imposition where M=1)

Inlet (Inlet Vel imposition = 50 m/s)

Left (Inviscid 
Wall change 
to  Periodic )
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Wall change to 
Periodic )

H2O + N2 @
500 kPa
3000 K

Air @ 101 kPa, 298 K

H2 + Air @ 101 
KPa, 298 K

0.01m
0.02m

 

Figure 22.   Schematic of full RDE simulation 
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The main challenge for this research was to select the appropriate boundary 

conditions to represent the RDE. For the RDE combustor inlet, pre-mixed fuels were 

injected into the combustion chamber via micro nozzles. By assuming that the distance 

between each nozzle was very small, the inlet could be simplified to be a continuous 

boundary that allows flow into the chamber.  

Next, there were various approaches to specify the inflow of the Hydrogen-Air 

mixture. Usually, the inlet could be treated as valves, which would open and close 

depending on the reservoir stagnation pressures or the static pressure at the chamber inlet. 

Since the detonation wave would be at a higher pressure than the static or stagnation 

pressure, the inlet would need to be choked for those conditions. The mass flow rates 

could also be specified for the pre-mixed fuel. However, it would be more insightful to 

allow the interaction to determine the mass flow rate of the inlet. To better characterize 

the gasdynamic at the inlet, the inlet should be constraint to as small an extent as 

possible. For this study, only the injection velocities and temperatures were specified. 

Other important gasdynamics parameters such as pressure, mass flow rate and density 

would be determined by the interaction of the detonation wave and inflow. The inlet 

velocity was determined from the height of the premixed fuel required to be filled to 

continuously support the detonation wave. 

/
f f

In
d rde CJ

H H
V

t W V
          (23) 

where: 

inV = injection or inlet velocity (m/s) 

fH = Height of premixed fuel required (m) 

dt = time for detonation wave to travel a complete cycle (s) 

rdeW = width chamber (m) 

CJV =Detonation wave speed at CJ condition (m/s) 
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As shown above, the injection velocity was calculated to be approximately 45 

m/s. To account for a certain degree of variability, an injection velocity of 50 m/s was 

used as the baseline simulation. 

When the computational domain was simplified into a 2D planar chamber, there 

would be a need to connect the left and right boundary to allow the detonation wave front 

to propagate continuously around the domain. The type of boundary condition employed 

was known as periodic boundaries. A negative offset in distance equivalent to the width 

of the chamber was applied to the right boundary and a positive offset was applied to the 

right boundary so that the two boundaries were connected numerically. To ensure that the 

detonation wave propagates in a specific direction, the boundary conditions were set as a 

wall initially. The high-pressure segment located on the left bottom of the domain would 

initialize the detonation and send the detonation wave propagating to the right. Before the 

detonation wave impacts the right wall, we changed the boundary conditions to periodic 

without affecting the detonation front, since the detonation wave travelled at a supersonic 

speed. 

For this study, the outflow boundary represented the outlet of the combustion 

chamber. There would be no nozzle attached to the outlet as it was not the focus of this 

research. The design of nozzle could be subsequently introduced after the inlet had been 

characterized. Several possible boundary conditions could be assumed for the outlet: - 

either supersonic outflow, sonic outflow or pressure dependent outflow. The boundary 

condition selected as a baseline set-up is a sonic outflow condition of Mach 1. Table 4 

summarized the simulation parameter used for the full RDE simulation.  
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Table 4.   Simulation parameters for full RDE simulation 

Full RDE Simulation 
Parameters Settings 
Dimensions 0.44 x 0.162 m 
Initial Conditions Products: 500 kPa, 3,000 K 

Reactant: 101 kPa, 300 K 
Boundary Conditions Inlet: Pressure Temperature using normal velocity 

Outlet: Multi-species inviscid surface tangency (Wall) & 
periodic zonal 
Left: Multi-species inviscid surface tangency (Wall) & 
periodic zonal 
Right: Direct Mach Number Imposition 

Equation Set Compressible Euler Equation 
Equation of State: Ideal Gas  

Spatial Discretization 2nd order accuracy in space 
2D 
Total Variation Diminishing (TVD) limiter: Mimod 

Riemann Solver Minimum Dissipation: LHS only 
Time Integration 4th Order Runge-kutta explicit 

CFL: 1 
Mesh Size 0.05 mm to 0.1 mm 

5261802 Quadrilaterals 
Topology: Structured 

Reaction 9 Species 18 reactions 

  
G. NOVEL RDE SIMULATIONS 

Instead of starting the simulation with wall boundary conditions for the left and 

right boundaries, the high-pressure ignition source could be shifted to the centre of the 

domain. Half the domain was filled with pre-mixed fuel as illustrated in Figure 23. Once 

the simulation commenced, shockwaves would be sent in the all directions. The 

shockwave travelling in the pre-mixed fuel region would transit into a detonation wave 

while the other shockwaves should turn into an expansion wave after some time. Thus, 

the need to pause the simulation to change the periodic boundary conditions was 

eliminated. In addition, this simulation depicted an actual RDE that had an omni-

directional igniter and would send shockwaves in all directions from the ignition point.  
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Figure 23.   Schematic of novel RDE simulation 
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V. DISCUSSION OF RESULTS AND ANALYSIS 

From the literature review, there were many different conflicting approaches to 

properly simulate detonation wave. Hence, the first step was to determine the best 

numerical scheme to adopt. A shocktube simulation was used to investigate various 

schemes such as implicit, explicit, low, high order Runge-kutta with different number of 

chemical reactions. The effects of mesh resolution and mesh topology such as 

unstructured and structured were also investigated. Once the numerical scheme was 

identified with the right mesh resolution and topology, a full RDE simulation was carried 

out to characteristic the inlet. Finally, with the insights gain from the full RDE 

simulation, a novel simulation set-up was formulated to eliminate the need to pause the 

simulation to change the periodic boundary conditions.   

A. BASIC SHOCKTUBE SIMULATION 

Figure 24 showed the initial condition of the shocktube. The high-pressure region 

was in red and the low pressure region was in blue. From Figures 25, a shock front could 

be observed at the 100th time step (t = 1 s ). Using Equation 24 to compute the average 

shock velocity and measuring pressure and temperature at Mach 1 (Figure 26), the 

following conditions were observed: 

 Pressure – 2 MPa.  

 Temperature at the shock front – 692 K.  

 Average shock velocity – 1 km/s.  
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Figure 24.   Pressure contour for basic shocktube simulation at 0 s  
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Figure 25.   Pressure contour for basic shocktube simulation at 1 s   
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The pressure, temperature and Mach number profile was extracted from a 

horizontal line (Y= 0.01 m).  The temperature drop observed at around 0.03 m due to the 

absences of reactants in that region.  The resolution of the shock wave was poor since a 

large mesh size of 0.1 mm was used. Since a shock was achieved, the next step was to 

include chemical reactions to obtain a detonation wave.  
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Figure 26.   Pressure, temperature and Mach number profile for basic shocktube 
simulation at 1 s  
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     (24) 

where  

x  = distance travelling from time from one time step to the next. 

 t = time step 
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B. RELIABLE REPRODUCTION OF CJ CONDITIONS 

As mentioned previously, it was important to make reliable reproductions of CJ 

conditions. It was not trivial to find the suitable simulation parameters to achieve a 

detonation wave that meets CJ conditions. The main iterations conducted to reproduce 

the CJ conditions were highlighted in this section.  

The CJ conditions for stoichiometric Hydrogen-Air mixture were outlined in as 

follows: 

 Pressure: 1.58 MPa 

 Temperature: 2,942 K 

 Average Shock Velocity: 1.965 km/s 

Initially, a one step chemical reaction was used, where several iterations had to be 

carried out to find the suitable simulation parameters to achieve detonation. The first 

series of iterations included varying the global CFL number with a fixed local CFL 

number of 1. The explicit multi-stage Runge-kutta time integration scheme was used.  

Figure 27 and 29 showed the pressure contours using the various global CFL numbers 

and a fixed local CFL = 1.0 
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Figure 27.   Pressure contour for global CFL of 1e15 at 7.31e9 sec 
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Figure 28.   Pressure, temperature and Mach number profile for global CF of 1e15 at 
7.31e9 sec 
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Figure 29.   Pressure contour for global CFL of 1e16 at 7.31e9 sec 
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Figure 30.   Pressure, temperature and Mach number profile for global CF of 1e16 at 
7.31e9 sec 

It was observed that the local number CFL number of 1 was able to reliably 

reproduce detonation waves. Setting a high global CFL number did not affect the 

computation. However, the CJ conditions were not reproduced.  

For global CFL of 1e15 (Figure 28), the measurements achieved were: 

 Pressure: 3 MPa 

 Temperature: 800 K  

 Average shock velocity: 6.38e-12 m/s  

Whereas for a global CFL of 1e16 (Figure 29), the measurements achieved were: 

 Pressure: 3.1 MPa 

 Temperature: 790 K 

 Average shock velocity: 5.73e-12 m/s 

It might be due to the one step chemical reactions which might have been over-

simplified to reach the CJ conditions, since the difference in the number of integration 

steps did not have any effects on the one-step chemical reaction.  
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The subsequent iterations were employed to investigate a 2 step chemical reaction 

with a CFL number of 1. The time integration schemes adopted were an explicit 2nd order 

Runge-kutta scheme and point implicit scheme. The dissipation function had been 

switched to aggressive mode. From Figure 31 and 33, there was no detonation wave 

structure observed in the flow field.  The measurements for the explicit scheme (Figure 

32) were: 

 Pressure: 2.2 MPa 

 Temperature: 250 K 

 Average shock velocity: 6 km/s 

Whereas the measurements for the implicit scheme (Figure 34) were: 

 Pressure: 1.8 MPa 

 Temperature: 1,100 K 

 Average shock velocity: 6.515 km/s 
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Figure 31.   Pressure contour for explicit 2nd order Runge-kutta scheme at 6.96 s  
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Figure 32.   Pressure, temperature and Mach number profile for explicit 2nd order 
Runge-kutta scheme at  6.96 s  
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Figure 33.   Pressure contour for point implicit scheme at 6.88 s  
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Figure 34.   Pressure, temperature and Mach number profile for point implicit  
scheme at 6.88 s  

There were two possible reasons why there was no detonation: (1) the choice of 

the two step reactions was not suitable for detonation and (2) the mesh cell size might be 

too coarse. Hence, the cell size was reduced to 0.05mm. From Figure 35, we observed 

that the next simulation also did not achieve detonation. The measurements for the 

implicit scheme (Figure 36) were: 

 Pressure: 3.1 MPa 

 Temperature: 3,800 K  

 Average shock velocity: 2.255 km/s 
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Figure 35.   Pressure contour for point implicit scheme with reduced mesh  
size of 0.05 mm at 5.29 s  
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Figure 36.   Pressure, temperature and Mach number profile for point implicit  
scheme with reduced mesh size of 0.05 mm at 5.29 s  
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Since detonation was still not achieved using the 2 step chemical reaction, 9 

species 18 step chemical reactions would be able to provide sufficient fidelity. The next 

simulations used a reduced unstructured mesh size of 0.05 mm. For Figure 37, a 

detonation wave was observed. However, the gasdynamic parameters were not at CJ 

conditions. The measurements for were: 

 Pressure: 3.1 MPa 

 Temperature: 2,600 K  

 Average shock velocity: 2.234 km/s 
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Figure 37.   Pressure contour for point implicit scheme with 9 species 18 step chemical 
reaction at 36.74 s  
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Figure 38.   Pressure, temperature and Mach number profile for point implicit scheme 
with 9 species 18 step chemical reaction at 36.74 s  

To further refine the simulation, structured mesh topology was explored. Both 

explicit 4th order Runge-kutta scheme and point implicit scheme were investigated. It 

could be observed that the explicit 4th order Runge-kutta scheme produced the CJ 

conditions for the detonation wave. The measurements were as follows: 

From Figure 40, the point implicit scheme produced: 

 Pressure: 2 MPa 

 Temperature: 2,722 K  

 Average shock velocity: 2.077 km/s 

From Figure 42, the explicit scheme produced: 

 Pressure: 1.8 MPa 

 Temperature: 2,868 K  

 Average shock velocity: 1.971 km/s 
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Figure 39.   Pressure contour for point implicit scheme with 9 species 18 step chemical 
reaction (structured mesh topology) at 29.12 s  
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Figure 40.   Pressure, temperature and Mach number profile for point implicit scheme 
with 9 species 18 step chemical reaction (structured mesh topology) at 

29.12 s  



 
 

54

X (m)

Y 
(m

)

P (Pa)

 

Figure 41.   Pressure contour for explicit 4th order Runge-kutta scheme with 9 species 
18 step chemical reaction (structured mesh topology) at 31.75 s  
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Figure 42.   Pressure, temperature and Mach number profile for explicit 4th order 
Runge-kutta scheme with 9 species 18 step chemical reaction (structured mesh 

topology) at 31.75 s  
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The CJ conditions have been reliability reproduced using the explicit 4th order 

Runge-kutta scheme with 9 species 18 step reactions (structured mesh topology). Table 5 

summarized the results obtain from the various iterations.  

Table 5.   Summary of results to produce CJ conditions 

Simulation VCJ (m/s) TCJ (K) PCJ (MPa) 
CJ Conditions 1,964.8 2,942 1.58 
Figure 27-shocktube2 6.38e-12 800 3.0 
Figure 29-shocktube4 5.73e12 790 3.1 
Figure 31-shocktube6 6,000 250 2.2 
Figure 33-shocktube7 6,515 1,100 1.8 
Figure 35-shocktube8 2,255 3,800 3.1 
Figure 37-shocktube9 2,234 2,600 3.1 
Figure 39-shocktube11 2,077 2,722 2.0 
Figure 41-rde2_1 1,971 2,868 1.8 

 

C. CJ CONDITIONS FOR DIFFERENT FUEL-AIR RATIOS 

To further confirm the accuracy of the implicit and explicit integration scheme, 

simulations using different fuel-air ratios were conducted. The results were summarized 

in Table 6.  It could be observed that explicit 4th order Runge-kutta scheme was more 

accurate. The various pressure profiles at the same time step were shown in Figure 36 to 

39. 

Table 6.   Comparison with CJ conditions 

  Scheme VCJ (m/s) TCJ (K) PCJ (MPa) 

1 Theory 1,964.8 2,942 1.58  
1 Implicit 2,077 2,722 2.0 
1 Explicit 1,971 2,868 1.8 
0.7 Theory 1,788 2,598 13.9 
0.7 Implicit 2,065 3,003 3.6 
0.7 Explicit 1,817 2,557 1.8 
2.2 Theory 2,165 2,655 14.2 
2.2 Implicit 2,609 3,086 1.8 
2.2 Explicit 2,206 2,674 2.2 
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Figure 43.   Pressure contour for fuel lean point implicit scheme at 36.41 s  
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Figure 44.   Pressure, temperature and Mach number profile for fuel lean point implicit 
scheme at 36.41 s  
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Figure 45.   Pressure contour for fuel rich point implicit scheme at 36.92 s  
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Figure 46.   Pressure, temperature and Mach number profile for fuel rich point implicit 
scheme at 36.92 s  
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Figure 47.   Pressure contour for fuel lean explicit scheme at 31.75 s  
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Figure 48.   Pressure, temperature and Mach number profile for fuel lean explicit 
scheme at 31.75 s  
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Figure 49.   Pressure contour for fuel rich explicit scheme at 31.75 s  
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Figure 50.   Pressure, temperature and Mach number profile for fuel rich explicit 
scheme at 31.75 s  
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D. PERIODIC BOUNDARY SIMULATIONS 

For the periodic boundary, there was a need to apply an offset of 0.44 m for each 

of the boundary in order for the detonation wave to flow through continuously. Again, 

several iterations were conducted before able to simulate the 2D cyclic domain. Figures 

51 to 53 showed the shock wave successfully flowed through the boundary. 
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Figure 51.   Pressure contour for periodic boundary simulation at timestep 1,000 
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Figure 52.   Pressure contour for periodic boundary simulation at timestep 1,100 

X (m)

Y 
(m

)

P (Pa)

 

Figure 53.   Pressure contour for periodic boundary simulation at timestep 1,200 
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E. FULL RDE SIMULATIONS ANALYSIS 

The analysis of the inlet gasdynamic consists of four main phases of the 

simulation, namely the ignition, flow through periodic boundary, the second RDE cycle 

and third RDE cycle. For each of the phases, the flow field, gasdynamic parameters such 

as pressure, temperature, Mach number, velocity, density and mass flow rate were 

analysed. The data were extracted from a horizontal line along the inlet axis (x-axis). 

1. Ignition Phase 

A 1 mm x 10 mm high-pressure region which represents the igniter was inserted 

at the bottom left corner of the domain as shown in Figure 55. Once the simulation 

commenced, a detonation wave was generated and propagate towards the right at an 

average velocity of 1.8 km/s. The flow field for temperature and pressure was shown in 

Figure 54.  
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Figure 54.   Temperature contour for ignition phase at 1.818 s  
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Once the high-pressure region began to expand, a shock wave propagated into the 

pre-injected Hydrogen-Air mixture and detonation occurred. Since there was no 

Hydrogen-Air mixture above the igniter, a shock wave was generated and propagated 

towards the outlet. The shockwave propagated in an oblique direction due to the forward 

movement of the detonation wave. Figure 55 showed the initial development of the flow 

field from 1.818 s to 10.757 s . 

1.818 µs 3.718 µs 5.374 µs

7.110 µs 8.920 µs 10.757 µs

 

Figure 55.   Flow field structure of ignition phase from 1.818 s  

As the transverse wave interacted with the denotation shock front, the “fish scale” 

structure was formed around 54.447 s  as shown in Figures 56 and 57. The cell 

dimension measured was 3 mm. From Figure 58, it could be observed that the pressure, 

temperature and Mach number increased after the detonation front as expected. The 

rotating detonation wave produced the following: 

 Pressure: 1.93 MPa 

 Temperature: 2,338.52 K  

 Average shock velocity: 1.829 km/s 
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Figure 56.   Temperature contour for ignition phase at 54.447 s  
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Figure 57.   Pressure contour for ignition phase at 54.447 s  



 
 

65

 

 

Figure 58.   Pressure, temperature and Mach number profile for ignition phase at 
54.77 s  

From Figure 59, the injection velocity had large fluctuation between -104.54 m/s 

and 313.48 m/s just behind the detonation front. For the inlet density, it was relatively 

low at 0.75 kg/m3 at the detonation front and increased immediately after the detonation 

front to 4.27 kg/m3. In addition, the mass flow rate at the combustor inlet large fluctuated 

between -234.99 kg/s and 934.46 kg/s. After the detonation shock front, the mass flow 

rate fluctuated around 100 kg/s.   
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Figure 59.   Inlet velocity and density profile for ignition phase at 54.77 s  

2. Flow Through Periodic Boundary 

At 213.31 s , the simulation was paused and both the left and right boundaries 

were changed to periodic boundaries. Figure 60 and 61 showed the temperature and 

pressure profile of the denotation wave just before it reached the periodic boundary. From 

Figure 63, the rotating detonation wave produced the following: 

 Pressure: 1.725 MPa 

 Temperature: 2,598 K  

 Average shock velocity: 1.88 km/s 
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Figure 60.   Temperature contour for flow through periodic boundary at 213.31 s  

 

Figure 61.   Pressure contour for flow through periodic boundary at 213.31 s  
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Figure 62.   Pressure, temperature and Mach number profile for flow through periodic 
boundary at 213.31 s  

From Figure 63, the injection velocity and mass flow rate continued to have large 

huge fluctuations. The injection velocity varied between -46.45 m/s and 309.62 m/s 

whereas the mass flow rate varied between -51.68 kg/s and 376.94 kg/s. For the inlet 

density, it maintained the profile where it was relatively low at 0.38 kg/m3 at the 

detonation front and increased immediately after the detonation front to 5.78 kg/m3.  One 

interesting observation was that pressure, density, injection velocity and mass flow had a 

sharp increase in magnitude at 0.10 m, which was downstream of the detonation wave. A 

closer examination of the flow field using Figure 64 showed that the expansion waves 

from the detonation front hit the freshly injected Hydrogen-Air mixture and was reflected 

into a shockwave since the Hydrogen-Air mixture had high impedance.  
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Figure 63.   Inlet velocity and density profile for flow through periodic boundary at 
213.31 s  
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Figure 64.   Pressure contour for flow through periodic boundary with lower maximum 
pressure range at 213.31 s  
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Once the simulation restarted, the products from the left boundary flow into the 

domain via the right boundary as shown in Figures 66 and 67. The height of the 

detonation wave front was 0.026 m. In addition, the height of the freshly injected 

Hydrogen-air mixture was measured and plotted in Figure 67. It could be observed that 

the height increased linearly from the detonation until 0.25 m away from the detonation 

front. 

 

 

Figure 65.   Temperature contour for flow through periodic boundary at 230.79 s  
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Figure 66.   Pressure contour for flow through periodic boundary at 230.79 s  
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Figure 67.   Height variation of Hydrogen-Air mixture from detonation front at 
230.79 s  
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Due to the discontinuities in density, the denotation wave that re-entered the 

domain mixed the freshly injected Hydrogen-Air mixture and the burn products. This 

resulted in a second denotation. Figure 68 showed the flow field of mixing detonation 

wave.  

Mixing of freshly injected Hydrogen‐Air 
mixture and burn products.

 

Figure 68.   Flow through periodic boundary from 230.79 s  to 301.21 s  

The detonation wave profiles were shown in Figures 69 and 70. The 

measurements were as follows: 

 Pressure: 3.54 MPa 

 Temperature: 2,829.9 K  

 Average shock velocity: 1.98 km/s 
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Figure 69.   Temperature contour for flow through periodic boundary at 287.34 s  
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Figure 70.   Pressure contour for flow through periodic boundary at 287.34 s  
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Figure 71.   Pressure, temperature and Mach number profile for flow through  
periodic boundary at 287.34 s   

There was no back flow of the combustor inlet as injection velocity varied 

between 20.67 m/s and 262.65 m/s and the mass flow rate varies between 33.93 kg/s and 

1000.84 kg/s. For the inlet, density varies between 1.35 kg/m3 and 8.66 kg/m3.  These 

observations are illustrated in Figure 73. The expansion wave profile observed in Figure 

65 is also observed in Figure 74.   
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Figure 72.   Inlet velocity and density profile for flow through periodic boundary at 
287.34 s  
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Figure 73.   Pressure contour for flow through periodic boundary using lower pressure 
range at 287.34 s  
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3. Second RDE Cycle 

As the detonation continued to propagate, the combustion chamber was 

completely filled with products and reached a quasi-steady state. The detonation wave 

profiles were shown in Figures 74 and 75. The measurements were as follows: 

 Pressure: 3.54 MPa 

 Temperature: 2,829.9 K  

 Average shock velocity: 1.98 km/s 

 

Figure 74.   Temperature contour for 2nd RDE cycle simulation at 365.8 s  
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Figure 75.   Pressure contour for 2nd RDE cycle simulation at 365.8 s  

 

Figure 76.   Pressure, temperature and Mach number profile for 2nd RDE cycle 
simulation at 365.8 s  
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The fluctuation of the injection velocity and mass flow rate varies between -23.30 

m/s and 241.91 m/s with the mass flow rate varies between -50.51 kg/s and 1117.88 kg/s. 

For the density varies between 1.46 kg/m3 and 8.80 kg/m3.  These observations were 

illustrated in Figure 77. We could also observed that the flow field was complex with 

expansion waves interacting with the detonation wave as well as small pockets of high-

pressure region in the combustor as shown in Figure 79.   

 

 

Figure 77.   Inlet velocity and density profile for 2nd RDE cycle simulation at 365.8 s   
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Figure 78.   Pressure contour for 2nd RDE cycle simulation using lower pressure range 
at 365.8 s  

Although the focus of this thesis was to characterize the inlet, the gasdynamic 

parameters at the combustor outlet were also measured for the steady state. Figure 80 and 

81 showed the various gasdynamic profiles. The measurements were as follows: 

 Maximum pressure: 502 kPa 

 Maximum temperature: 2,172.12 K  

 Outlet axial velocity: 406.71 m/s 

 Maximum mass flow rate: 261.792 m/s 
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Figure 79.   Pressure, temperature and Mach number profile for 2nd RDE cycle 
simulation (outlet) at 365.8 s  

 

Figure 80.   Velocity and density profile for 2nd RDE cycle simulation (outlet) at 
365.8 s  
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4. Third RDE Cycle 

Figures 81 to 86 showed the flow field of the detonation wave rotating in the 3rd 

cycle.  As the detonation continued to propagate, the combustion chamber was 

completely filled with product. The measurements were as follows: 

 Pressure: 3.25 MPa 

 Temperature: 2,790.8 K  

 Average shock velocity: 1.91 km/s 

The fluctuation of the injection velocity varies between -102.15 m/s and 331.08 

m/s with the mass flow rate varied between -95.70 kg/s and 1083.93 kg/s. For the density 

varied between 0.71 kg/m3 and 8.46 kg/m3.  These observations were illustrated in 

Figure 84.  We could observed that the flow field was similar to the 2nd cycle which had 

complex interaction between the expansion waves interacting with the detonation wave 

as well as small pockets of high-pressure region in the combustor. 

 

Figure 81.   Temperature contour for 3rd RDE cycle simulation at 573.66 s  
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Figure 82.   Pressure contour for 3rd RDE cycle simulation at 573.66 s  

 

Figure 83.   Inlet pressure, temperature and Mach number profile for 3rd RDE cycle 
simulation at 573.66 s  
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Figure 84.   Inlet velocity and density plot for 3rd RDE cycle simulation at 573.66 s  

The combustor outlet was also measured for the 3rd cycle steady state conditions. 

Figure 85 and 86 showed the various gasdynamic profiles. The measurements were as 

follows: 

 Maximum pressure: 269 kPa 

 Maximum temperature: 2,578.1 K  

 Outlet axial velocity: 1,377.81 m/s 

 Maximum mass flow rate: 856.9 kg/s 
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Figure 85.   Outlet pressure, temperature and Mach number profile for 3rd RDE cycle 
simulation at 573.66 s   

 

Figure 86.   Outlet velocity and density profile for 3rd RDE cycle simulation at 
573.66 s  
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F. NOVEL RDE SIMULATIONS  

A novel simulation set-up was implemented to eliminate the need to pause the 

simulation to change to periodic boundaries.  Figure 87 showed the high-pressure ignition 

being ignited at the start of the simulation.  

  

Figure 87.   Pressure contour for novel RDE simulation at 1.711 s  

As the simulation progressed, a shockwave propagated radically from the ignition 

source. Figures 88 to 90 showed the shockwave moving towards the right transiting into a 

detonation wave when the shockwave interacted with the Hydrogen-Air mixture. For the 

rest of the shockwave, it continued to propagate away from the source. 
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Figure 88.   Pressure contour for novel RDE simulation at 11.056 s  

 
 

Figure 89.   Pressure contour for novel RDE simulation at 44.3 s  
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Figure 90.   Pressure contour for novel RDE simulation at 97.542 s  

The left propagating shockwave prevented freshly injected Hydrogen-Air mixture 

from being injected from the inlet. As it propagated, the region behind the shockwave 

was not filled with Hydrogen-air mixture. Hence, when the right propagating detonation 

wave front encountered the region behind the shockwave, it ran out of fuel and failed. 

The gases started to expand with the pressure, temperature and density decreasing in 

time. This was shown using the pressure contour in Figures 91 and 92. The plots had 

been adjusted to show a lower pressure range.  This simulation gave us valuable insights 

that the ignition source must directional in order to achieve a rotating detonation wave. 

Furthermore, it showed that the injection of the Hydrogen-Air mixture must be 

continuous to maintain the detonation wave. 
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Figure 91.   Pressure contour for novel RDE simulation with lower pressure range at 
161.791 s  

 

Figure 92.   Pressure contour for novel RDE simulation with lower pressure range at 
213.632 s  
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VI. CONCLUSION 

This study had provided valuable insights of the gasdynamic conditions that 

existed at the combustor inlet. These insights would help engine designer to properly 

design the inlet of the RDE by taking advantage of the existing gasdynamic data to help 

isolate the rotating detonation in the combustor chamber.  

In this study, various numerical schemes, number of chemical reactions, mesh 

topology and mesh refinement were investigated to reliable reproduce the Chapman-

Jouguet conditions. A set of simulations using a shocktube were carried out and it was 

found that explicit 4th Order Runge-kutta scheme using structured mesh topology, 18 

species and 9 reactions with a maximum mesh cell size of 0.05 mm was required to 

reproduce the Chapman-Jouguet conditions. 

By simplifying the RDE into a 2D domain, simulations were carried out to 

characterize the gasdynamics at the combustor inlet. It was found that the detonation 

wave travels at CJ conditions and affects the inflow of the fresh reactants (fuel-oxidizer 

mixture).  

A novel method of simulation was also investigated where there is no need to 

pause the simulation to change into periodic boundary conditions. It was found that the 

shockwave from the ignition source affected the propagation of the denotation wave and 

prevented the newly injected Hydrogen-Air mixture to be fed to the detonation wave. 

This resulted in detonation failure. Hence, the direction of the ignition source would need 

to be considered for the engine design.  
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VII. FUTURE WORK AND RECOMMENDATIONS 

Since the flow field of a RDE has been successfully achieved, the next step is to 

better model the inlet of the RDE. Instead of using a continuous inflow boundary 

condition, the computational domain can be modeled with micro nozzles as shown in 

Figure 94. The set-up allows the flow field in the nozzles to be studied. The micro 

nozzles need to be smaller than the detonation cell size of the fuel-air mixture so that the 

detonation wave will not propagate upstream of the nozzle and disturb or even unstart the 

supersonic inlet. Different design of the micro nozzles can be studied to gain further 

inside to better design the inlet.  A parametric study can also be conducted on the 

dimensions such as length and diameter of the nozzles. 

Outlet

Left 
(Wall to 
Periodic )

0.44m

0.177m

radial

axial

azimuthal

Right 
(Wall to 
Periodic )

H2O + N2 @
500 kPa
3000 K

Air @ 101 kPa, 298 K

H2 + Air @ 101 kPa, 298 K

Inlet:
Micro 
nozzles

 

Figure 93.   Schematic of full RDE domain with micro nozzles 
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Once the optimal configuration has been established, other fuel-oxidizer mixture 

such as JP10-air and ethylene-air can be investigated. JP10 is a military qualified jet 

aviation fuel with high energy density and is suitable choice for RDE application. 

Next, adaptive mesh refinement can be introduced to reduce the number of cells 

required for the domain. The adaptive mesh refinement will be able to provide higher 

resolution with smaller cells at the shock fronts and bigger cells in the products region 

where much smaller gradients are present. This will lower the overall computational 

requirement hence reducing computational time.  
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APPENDIX A: SUMMARY OF SIMULATION SET-UP 
PARAMETERS 

CJ simulation 
Parameters Settings 
Figure 27 - 28 (Shocktube2) 
Dimensions 0.1 x 0.02 m 
Initial Conditions Products: 200 kPa, 300 K 

Reactant: 101 kPa, 300 K 
Boundary Conditions Inlet: Multi-species inviscid surface tangency (Wall) 

Outlet: Multi-species inviscid surface tangency (Wall) 
Left: Multi-species inviscid surface tangency (Wall) 
Right: Multi-species inviscid surface tangency (Wall) 

Equation Set Compressible Euler Equation 
Equation of State: Ideal Gas  

Spatial Discretization 2nd order accuracy in space 
2D 
Total Variation Diminishing (TVD) limiter: Continuous 

Riemann Solver Minimum Dissipation: LHS & RHS 
Activate pressure switch: Supersonic 
Activate pressure gradient switch: Normal 

Time Integration Multi-stage explicit Runge-kutta 
Dual time stepping 
Global CFL: 1e15 
Local CFL: 0.95 

Mesh Size 0.1 mm  
532,766 triangles 
Topology: Unstructured 

Reaction 1 step 
Figure 29 - 30 (Shocktube4) 
Dimensions 0.1 x 0.02 m 
Initial Conditions Products: 200 kPa, 300 K 

Reactant: 101 kPa, 300 K 
Boundary Conditions Inlet: Multi-species inviscid surface tangency (Wall) 

Outlet: Multi-species inviscid surface tangency (Wall) 
Left: Multi-species inviscid surface tangency (Wall) 
Right: Multi-species inviscid surface tangency (Wall) 

Equation Set Compressible Euler Equation 
Equation of State: Ideal Gas  

Spatial Discretization 2nd order accuracy in space 
2D 
Total Variation Diminishing (TVD) limiter: Continuous 
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Riemann Solver Minimum Dissipation: LHS & RHS 
Activate pressure switch: Supersonic 
Activate pressure gradient switch: Normal 

Time Integration Multi-stage explicit Runge-kutta 
Dual time stepping 
Global CFL: 1e16 
Local CFL: 0.95 

Mesh Size 0.1 mm  
532,766 triangles 
Topology: Unstructured 

Reaction 1 step 
Figure 31 - 32 (Shocktube5) 
Dimensions 0.1 x 0.02 m 
Initial Conditions Products: 200 kPa, 300 K 

Reactant: 101 kPa, 300 K 
Boundary Conditions Inlet: Multi-species inviscid surface tangency (Wall) 

Outlet: Multi-species inviscid surface tangency (Wall) 
Left: Multi-species inviscid surface tangency (Wall) 
Right: Multi-species inviscid surface tangency (Wall) 

Equation Set Compressible Euler Equation 
Equation of State: Ideal Gas  

Spatial Discretization 2nd order accuracy in space 
2D 
Total Variation Diminishing (TVD) limiter: Continuous 

Riemann Solver Minimum Dissipation: LHS & RHS 
Activate pressure switch: Supersonic 
Activate pressure gradient switch: Aggressive 

Time Integration 2nd order explicit Runge-kutta 
Dual time stepping 
CFL: 1 

Mesh Size 0.1 mm  
532,766 triangles 
Topology: Unstructured 

Reaction 1 step 
Figure 33 – 34 (Shocktube6) 
Dimensions 0.1 x 0.02 m 
Initial Conditions Products: 200 kPa, 300 K 

Reactant: 101 kPa, 300 K 
Boundary Conditions Inlet: Multi-species inviscid surface tangency (Wall) 

Outlet: Multi-species inviscid surface tangency (Wall) 
Left: Multi-species inviscid surface tangency (Wall) 
Right: Multi-species inviscid surface tangency (Wall) 

Equation Set Compressible Euler Equation 
Equation of State: Ideal Gas  
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Spatial Discretization 2nd order accuracy in space 
2D 
Total Variation Diminishing (TVD) limiter: Continuous 

Riemann Solver Minimum Dissipation: LHS & RHS 
Activate pressure switch: Supersonic 
Activate pressure gradient switch: Normal 

Time Integration Point implicit 
Dual time stepping 
CFL: 1 

Mesh Size 0.1 mm  
532,766 triangles 
Topology: Unstructured 

Reaction 2 step 
Figure 35 – 36 (Shocktube8) 
Dimensions 0.1 x 0.02 m 
Initial Conditions Products: 200 kPa, 300 K 

Reactant: 101 kPa, 300 K 
Boundary Conditions Inlet: Multi-species inviscid surface tangency (Wall) 

Outlet: Multi-species inviscid surface tangency (Wall) 
Left: Multi-species inviscid surface tangency (Wall) 
Right: Multi-species inviscid surface tangency (Wall) 

Equation Set Compressible Euler Equation 
Equation of State: Ideal Gas  

Spatial Discretization 2nd order accuracy in space 
2D 
Total Variation Diminishing (TVD) limiter: Continuous 

Riemann Solver Minimum Dissipation: LHS & RHS 
Activate pressure switch: Supersonic 
Activate pressure gradient switch: Aggressive 

Time Integration Point implicit 
Dual time stepping 
CFL: 1 

Mesh Size 0.05 mm  
2,113,220 triangles 
Topology: Unstructured 

Reaction 2 step 
Figure 37 – 38 (Shocktube9) 
Dimensions 0.1 x 0.02 m 
Initial Conditions Products: 200 kPa, 3,000 K 

Reactant: 101 kPa, 300 K 
Boundary Conditions Inlet: Multi-species inviscid surface tangency (Wall) 

Outlet: Multi-species inviscid surface tangency (Wall) 
Left: Multi-species inviscid surface tangency (Wall) 
Right: Multi-species inviscid surface tangency (Wall) 
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Equation Set Compressible Euler Equation 
Equation of State: Ideal Gas  

Spatial Discretization 2nd order accuracy in space 
2D 
Total Variation Diminishing (TVD) limiter: Minmod 

Riemann Solver Minimum Dissipation: LHS & RHS 
Activate pressure switch: Supersonic 
Activate pressure gradient switch: Normal 

Time Integration Point implicit 
Dual time stepping 
CFL: 1 

Mesh Size 0.05 mm  
2,113,220 triangles 
Topology: Unstructured 

Reaction 9 species 18 reactions 
Figure 39 – 40 (Shocktube11) 
Dimensions 0.1 x 0.02 m 
Initial Conditions Products: 400 kPa, 3,000 K 

Reactant: 100 kPa, 300 K 
Boundary Conditions Inlet: Multi-species inviscid surface tangency (Wall) 

Outlet: Multi-species inviscid surface tangency (Wall) 
Left: Multi-species inviscid surface tangency (Wall) 
Right: Multi-species inviscid surface tangency (Wall) 

Equation Set Incompressible Euler Equation 
Equation of State: Ideal Gas  

Spatial Discretization 2nd order accuracy in space 
2D 
Total Variation Diminishing (TVD) limiter: Minmod 

Riemann Solver Minimum Dissipation: LHS & RHS 
Activate pressure switch: Supersonic 
Activate pressure gradient switch: Normal 

Time Integration Point implicit 
Dual time stepping 
CFL: 1 

Mesh Size 0.05 mm  
797,601 quadilaterals 
Topology: Structured 

Reaction 9 species 18 reactions 
Figure 41 – 42 (rde2_1) 
Dimensions 0.1 x 0.02 m 
Initial Conditions Products: 400 kPa, 3,000K 

Reactant: 100 kPa, 300K 
Boundary Conditions Inlet: Multi-species inviscid surface tangency (Wall) 

Outlet: Multi-species inviscid surface tangency (Wall) 
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Left: Multi-species inviscid surface tangency (Wall) 
Right: Multi-species inviscid surface tangency (Wall) 

Equation Set Compressible Euler Equation 
Equation of State: Ideal Gas  

Spatial Discretization 2nd order accuracy in space 
2D 
Total Variation Diminishing (TVD) limiter: Minmod 

Riemann Solver Minimum Dissipation: LHS only 
Time Integration 4th order explicit Runge-kutta 

CFL: 1 
Mesh Size 0.05 mm  

797,601 quadilaterals 
Topology: Structured 

Reaction 9 species 18 reactions 
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APPENDIX B: SIMULATION VIDEOS 

The following is the list of simulation videos associated to the shocktube simulation, full 
RDE simulation and the novel RDE simulation. The videos can be found URL: 
http://edocs.nps.edu/npspubs/scholarly/theses/2010/Dec/10Dec_Lim_Eugene_tools.pdf 

 

S/No Title Description 

1 shocktube.avi This video shows the pressure contour of a 

shocktube described in Figure 41. 

2 full_rde_temperature.avi This video shows the temperature contour of the 

full RDE simulation described in Chapter V 

Section E. 

3 full_rde_pressure.avi This video shows the pressure contour of the full 

RDE simulation described in Chapter V Section 

E. 

4 novel_rde_temperature.avi This video shows the temperature contour of the 

novel RDE simulation described in Chapter V 

Section F. 

5 novel_rde_pressure.avi This video shows the pressure contour of the 

novel RDE simulation described in Chapter V 

Section F. 
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